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Abstract

Silica polymerization remains a critical process in materials science, yet its multiscale nature challenges conventional modeling approaches.
This work presents a hybrid computational framework combining kinetic Monte Carlo (kMC) and reactive molecular dynamics (MD) to
simulate silica network formation under aqueous conditions. The kMC module governs stochastic reaction kinetics, including hydrolysis
(Si–O–Si + H2O ⇌ 2Si–OH) and condensation (Si–OH + HO–Si → Si–O–Si + H2O), with rates modulated by local proton activity (𝑎H+ ). The
MD component employs the ReaxFF force field to resolve atomic-scale structural relaxation and stress accumulation (𝜎𝑖𝑗) in SiO4 tetrahedra. A
bidirectional coupling protocol synchronizes kMC and MD domains via a weighted Hamiltonian 𝐻 = 𝜆𝐻kMC + (1 − 𝜆)𝐻MD, where 𝜆 adaptively
scales with the system’s tetrahedrality parameter (⟨𝑄4⟩). The framework introduces a time-decomposition algorithm to handle disparate
timescales, with kMC advancing reaction steps (∆𝑡kMC ∼ 10−6 s) and MD resolving picosecond-scale vibrations (∆𝑡MD = 0.5 fs). Validation
against silica solubility curves (log[SiO2]sat = −0.38 ⋅ pH + 3.2) and small-angle neutron scattering (SANS) data reveals consistent oligomer
size distributions (radius of gyration 𝑅𝑔 = 1.2λ2.8 nm). However, discrepancies emerge in gelation times (𝑡𝑔), with simulations overestimating

experiments by 18–22% at pH > 5, suggesting incomplete treatment of hydrogen-bonding networks. The model identifies metastable Q3-rich
clusters as kinetic traps, delaying percolation thresholds. This work highlights the necessity of explicit solvent modeling and strain-dependent
rate corrections in multiscale silica polymerization frameworks.
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1. Introduction

Silicate networks form through a hierarchy of processes that
span a vast range of time and length scales. Proton transfer
events occur at femtosecond scales, molecular rearrangements
are observed on the order of picoseconds, and oligomer ag-
gregation can extend into the millisecond regime. This com-
plex multiscale behavior poses significant challenges for tradi-
tional computationalmodels. Classical theories such as Smolu-
chowski aggregation or density functional theory (DFT)-based
reaction pathways have provided valuable insights into indi-
vidual aspects of network formation, yet they fail to bridge
the gap between these disparate scales effectively. In partic-
ular, while reactive molecular dynamics (MD) simulations
employing force fields such as ReaxFF have the capacity to
capture bond-breaking and bond-forming events with atomic
resolution, they are inherently limited by the short timescales
accessible in simulations. Rare events, such as the slow poly-
merization reactions that occur over time scales on the order
of 103 seconds, remain out of reach for conventional MD sim-
ulations due to prohibitive computational costs [1], [2].

Amajor challenge inmodeling silicate network formation is
the necessity of accurately capturing both short-range covalent
interactions and long-range network organization. Bond for-
mation in silicate systems involves concertedmechanisms that
include hydrolysis, condensation, and complexation with vari-
ous counterions. The energetics and kinetics of these elemen-
tary steps are significantly influenced by solvation effects, pH
variations, and the presence of external templates or additives
that can modulate reaction pathways. Traditional DFT ap-

proaches provide atomistic insights into reaction barriers and
intermediate species; however, their applicability is confined
to relatively small system sizes and short time windows. On
the other hand, classical force fields can describe large-scale
structural evolution but lack the ability to explicitly model re-
active events without the incorporation of empirical reaction
coordinates. These limitations necessitate the development
of hybrid computational strategies that integrate quantum
mechanical calculations with coarse-grained or mesoscopic
models to extend temporal and spatial resolutions.
Recent advances in machine learning (ML)-augmented

force fields have shown promise in addressing the limitations
of conventional computational techniques. By training neu-
ral network potentials on high-fidelity quantum chemical
datasets, researchers have developed reactive potentials that
retain the accuracy of DFT calculations while achieving com-
putational efficiencies comparable to classicalMD simulations.
Such ML-based methods have demonstrated significant im-
provements in predicting the formation of silicate oligomers
and their subsequent polymerization dynamics. Furthermore,
enhanced sampling techniques such asmetadynamics, acceler-
atedMD, and replica exchangemethods have been employed to
access rare-event kinetics in silicate network evolution. These
approaches enable the exploration of reaction pathways that
are otherwise inaccessible due to energy barriers and long
relaxation times [3].
One of the primary factors governing silicate polymerization

is the distribution of oligomeric species within solution, which
is dictated by both thermodynamic stability and kinetic acces-
sibility. Experimental studies employing nuclear magnetic res-
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Silicate Oligomer Structure Type Formation Energy
(kJ/mol)

Dominant pH
Regime

Monomer (SiO4−
4 ) Tetrahedral 0 (reference) Alkaline

Dimer (Si2O
6−
7 ) Corner-sharing tetrahedra -45.2 Alkaline

Cyclic Trimer (Si3O
6−
9 ) Three-membered ring -72.5 Neutral to alkaline

Linear Trimer (Si3O
8−
10 ) Linear chain -68.3 Alkaline

Cyclic Tetramer (Si4O
8−
12 ) Four-membered ring -98.7 Neutral

3D Oligomers Polyhedral clusters Variable Near-neutral to
acidic

Table 1. Comparison of silicate oligomer structures, their relative formation energies, and the dominant pH regime in which they are
observed.

onance (NMR) spectroscopy and small-angle X-ray scattering
(SAXS) have revealed that the formation of silicate oligomers
proceeds through a complex interplay between monomer ad-
dition and cluster rearrangement. In highly alkaline condi-
tions, soluble silicate species predominantly exist as small,
negatively charged oligomers, while under near-neutral condi-
tions, the system undergoes a gradual transition toward three-
dimensional network formation. These experimental insights
provide critical benchmarks for validating computational mod-
els and refining force field parameterizations [4].
To illustrate the diversity of silicate oligomer structures, we

present a summary of the most commonly observed species
along with their associated formation energies as computed
from DFT-based calculations. The table below provides a com-
parative analysis of different silicate clusters, highlighting the
relative stability of various configurations [5], [6].
Beyond the oligomeric stage, the self-assembly of extended

silicate networks follows a nucleation-and-growthmechanism
that is highly dependent on supersaturation conditions, ionic
strength, and the presence of structure-directing agents. The
competition between kinetic trapping and thermodynamic
stability leads to the formation of metastable intermediates
that subsequently undergo reorganization into more stable
configurations. Molecular simulations have indicated that the
free energy landscape of silicate polymerization is punctuated
by multiple intermediate states corresponding to partially con-
densed species. The presence of water plays a crucial role in
mediating these transitions, as hydrolysis and condensation
reactions are both influenced by local hydration shell dynam-
ics.
Another critical aspect of silicate network formation is the

role of counterions in modulating polymerization pathways.
Cations such as sodium, potassium, and calcium interact with
negatively charged silicate species, thereby stabilizing cer-
tain configurations and altering reaction kinetics. Spectro-
scopic studies have demonstrated that alkali metal cations
preferentially coordinate with terminal oxygen atoms in sili-
cate oligomers, leading to variations in bond angles and net-
work connectivity. Computationally, these effects have been
captured through explicit solvation models that incorporate
ion–silicate interactions in a self-consistent manner.
To provide a quantitative understanding of cation effects, we

present a computational study comparing the binding energies
of various cations with silicate oligomers. The data in Table 2
illustrate the significant influence of counterion identity on
silicate stabilization.

Kinetic Monte Carlo (kMC) methods, when parameterized
using bulk activation energies (𝐸𝑎), offer an alternative means
to simulate long-time behavior. However, these methods often
neglect local strain effects and subtle variations in the reac-
tion environment, which can lead to inaccurate predictions of
cluster morphology and network evolution. Recent attempts
to couple kMC and MD simulations have shown promise in
combining the strengths of both approaches, yet these efforts
frequently encounter synchronization challenges, particularly
in preserving detailed balance during the exchange of configu-
rations between the two solvers. Such issues can compromise
the accuracy and reliability of the simulation outcomes.
This work addresses these challenges by introducing a novel

hybrid kMC-MD framework that couples stochastic reaction
kineticswith atomistic detail. Our approach incorporates three
key innovations. First, we implement a reaction-diffusion ker-
nel for the kMC component that dynamically updates rate con-
stants based on MD-derived strain tensors (𝜖𝑖𝑗). This coupling
allows local mechanical effects, which are often overlooked in
conventional kMC models, to be directly integrated into the
reaction kinetics. Second, a solvent-mediated proton trans-
port model is incorporated, capturing the intricacies of the
Grotthuss mechanism. This feature is essential for accurately
simulating the early-stage proton transfer kinetics that domi-
nate silicate polymerization. Third, a graph-theoretic analysis
of the evolving silica network is employed to quantify cyclic
defect densities (𝑛ring) and to characterize the connectivity of
the system.
Benchmarking our model against experimental 29Si nuclear

magnetic resonance (NMR) spectra reveals that the predicted
Q4∕Q3 ratio is improved significantly, with errors reduced to
less than 9% compared to over 27% in models relying solely on
kMC. Furthermore, the framework demonstrates robust util-
ity in modeling nanoporous silica formation, with simulated
pore size distributions (𝑑𝑝 = 2–5 nm) aligning with nitrogen
adsorption experiments within an error margin of 15%.
The remainder of this paper is organized as follows. In Sec-

tion 2, we describe the computational methodology, detailing
the partitioning of the simulation domain into subdomains
assigned to either kMC or MD, the use of a face-centered cubic
(FCC) lattice for the kMC model, and the specifics of the MD
simulations including the ReaxFF-SiO2 parameterization and
long-range Coulomb interaction treatments. Section 3 focuses
on the reaction network and the role of solvent effects, dis-
cussing the pH-dependent proton transfer kinetics, the incor-
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Cation Preferred Binding Site Binding Energy
(kJ/mol)

Effect on Polymer-
ization

Na+ Terminal oxygen -65.3 Moderate stabiliza-
tion

K+ Bridging oxygen -58.7 Weak stabilization
Ca2+ Multiple coordination sites -120.5 Strong stabilization
Mg2+ Inner coordination shell -135.2 Very strong stabiliza-

tion
Al3+ Framework incorporation -210.4 Structural reinforce-

ment

Table 2. Binding energies of various cations to silicate oligomers, illustrating their effects on polymerization stability.

poration of coarse-grained water dynamics, and the modeling
of hydronium ion transport via the Grotthuss mechanism. Sec-
tion 4 elaborates on the structural evolution of the system and
the gelation dynamics that govern network formation, includ-
ing detailed analyses of cluster aggregation, fractal dimension
evolution, and the impact of cyclic silicate motifs on network
stiffness. Finally, Section 5 presents our conclusions, sum-
marizes the key findings, discusses limitations, and outlines
avenues for future research. This comprehensive treatment
of silica polymerization, achieved by integrating both micro-
scopic and mesoscopic phenomena, represents a significant
step toward the predictive modeling of complex silicate-based
materials.

2. Computational Methodology
The hybrid simulation framework developed in this work is
designed to seamlessly integrate kinetic Monte Carlo (kMC)
methods with molecular dynamics (MD) simulations, thereby
capturing the essential physics of silicate polymerization
across a broad range of time scales. The computational do-
main is partitioned into 𝑁 subdomains, with each subdomain
dynamically assigned to either the kMC or MD solver based
on a local reaction density threshold, 𝜌𝑐. Specifically, when
the local density of reactive species exceeds 𝜌𝑐 = 0.15 nm−3,
the corresponding subdomain is advanced using MD; other-
wise, the kMC method is employed. This partitioning strategy
ensures that computational resources are allocated efficiently,
with MD capturing fast, atomistically detailed processes and
kMC handling slower, statistically driven events [7].
The MD component of the hybrid simulation employs a

reactive force field (ReaxFF) to model bond formation and
breakage with high fidelity. ReaxFF has been extensively pa-
rameterized for silicate systems and is capable of capturing
key reaction mechanisms, including hydrolysis, condensation,
and the stabilization of intermediate oligomers. The time step
for MD simulations is set to 0.25 fs to ensure accurate integra-
tion of atomic forces, while periodic boundary conditions are
applied to maintain consistency across subdomains. The kMC
component, on the other hand, employs a graph-based repre-
sentation of silicate species, where reaction probabilities are
computed based on pre-tabulated activation barriers obtained
from density functional theory (DFT) calculations. By leverag-
ing this hierarchical approach, the simulation framework is
able to bridge the time-scale gap inherent in silicate network
evolution.

One of the key advantages of this hybrid methodology is
its ability to adaptively resolve reaction kinetics without in-
curring prohibitive computational costs. In regions where
reactive events are frequent, the system transitions to MD
to accurately capture short-range atomic interactions. Con-
versely, in sparsely reactive regions, kMCefficiently propagates
the system forward without requiring explicit atomic trajecto-
ries. This adaptive approach is particularly useful in studying
the competition between oligomerization and gelation, where
localized fluctuations in reaction rates can give rise to hetero-
geneous network structures [8].
To evaluate the efficiency of this hybrid approach, we

performed benchmark simulations on a model silicate solu-
tion containing a controlled distribution of monomers and
oligomers. The performancemetrics, including computational
speedup and accuracy relative to full MD simulations, are sum-
marized in Table 3. The results demonstrate that the hybrid
framework achieves a substantial reduction in computational
cost while maintaining high fidelity in the predicted oligomer
size distribution.
The results indicate that the hybrid framework achieves a

nearly sevenfold acceleration in simulation time compared to
full MD, with only a minor deviation in predicted oligomer
distributions. This improvement is particularly valuable for
studying long-time-scale phenomena, such as gelation and
network percolation, which are otherwise intractable with
traditional MD approaches alone.
Beyond efficiency, another critical feature of the hybrid

framework is its ability to capture the emergence of mesoscale
structural motifs in silicate networks. As polymerization pro-
ceeds, the system transitions from a regime dominated by
isolated oligomers to an interconnected gel-like network. This
process is governed by a balance between reaction kinetics
and diffusion-limited aggregation, both of which are naturally
accommodated within the hybrid scheme. The competition
between these mechanisms leads to a broad distribution of
network topologies, ranging from loosely branched structures
to densely cross-linked frameworks.
To quantify the degree of network connectivity, we intro-

duce a graph-based order parameter, 𝜉, which measures the
fraction of fully coordinated silicate species within the system.
Specifically, 𝜉 is defined as:

𝜉 = 𝑁coordinated
𝑁total

where 𝑁coordinated represents the number of silicate species
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Simulation Method Average Computational
Time (per ns)

Accuracy (% devia-
tion from full MD)

Speedup Factor

Full MD (ReaxFF) 120 hrs Reference (0%) 1.0
kMC-only 5 hrs 15.7% 24.0
Hybrid (MD + kMC) 18 hrs 3.2% 6.7

Table 3. Comparison of computational efficiency and accuracy for different simulation methods applied to silicate polymerization.

Simulation Method 𝜉 at 1 ns 𝜉 at 10 ns 𝜉 at 50 ns 𝜉 at 100 ns
Full MD (ReaxFF) 0.12 0.45 0.78 0.92
kMC-only 0.10 0.38 0.65 0.81
Hybrid (MD + kMC) 0.11 0.42 0.74 0.89

Table 4. Evolution of network connectivity parameter 𝜉 over time for different simulation methods.

with four or more bridging oxygen bonds, and 𝑁total is the
total number of silicate units. The evolution of 𝜉 over time for
different simulation methods is presented in Table 4.
These results confirm that the hybrid framework closely

reproduces the network evolution predicted by full MD, with
minor discrepancies at intermediate time scales. Importantly,
the hybrid approach significantly outperforms kMC-only sim-
ulations in capturing early-stage oligomerization dynamics,
highlighting the necessity of retaining atomistic resolution in
regions of high reaction density.
The kMC component utilizes a face-centered cubic (FCC)

grid with a lattice spacing of 𝑎 = 0.76 nm. Each lattice site
is capable of hosting Si(OH)𝑚 species, where 𝑚 can assume
values of 3 or 4, corresponding to different coordination en-
vironments [9]. Transition rates between sites, denoted 𝑘𝑖→𝑗 ,
are modeled by an Arrhenius-type equation that incorporates
local mechanical stress:

𝑘𝑖→𝑗 = 𝜈0 exp (−
𝐸𝑎 + 𝛾 ⋅ Tr(𝜎)

𝑘𝐵𝑇
) ,

where 𝜈0 = 1012 s−1 is the attempt frequency, 𝐸𝑎 is the acti-
vation energy, 𝛾 = 0.45 nm3 quantifies the coupling between
mechanical stress and reaction kinetics, 𝜎 is the local stress
tensor obtained from MD, 𝑘𝐵 is the Boltzmann constant, and
𝑇 is the system temperature. This formulation allows for dy-
namic updating of reaction rates based on local environmental
conditions as determined by MD.
For the MD component, simulations are performed using

theReaxFF-SiO2 parameterization, which accurately describes
the reactive interactions between silicon and oxygen atoms.
A cut-off radius of 𝑟𝑐 = 1.2 nm is implemented to limit short-
range interactions, while long-range Coulomb interactions
are treated using the particle-particle particle-mesh (PPPM)
method, achieving an accuracy of 10−4 eV/Å. The MD inte-
gration is performed using a velocity-Verlet algorithm with
adaptive time-stepping to ensure numerical stability. In re-
gions where the potential energy gradient is steep—typically
indicative of active reaction zones—the time step ∆𝑡MD is re-
duced to capture the rapid dynamics accurately.
Every 104 MD steps, the system is analyzed using a De-

launay triangulation algorithm to identify under-coordinated
silicon atoms (i.e., those with a coordination number CN < 4).
These under-coordinated atoms are flagged as potential sites

for kMC-driven reactive events, triggering the reverse commu-
nication between the MD and kMC modules. To facilitate this
exchange, a Gaussian process regression (GPR) model is em-
ployed to map the MD-derived local stress fields, represented
by 𝜎𝑥𝑥, 𝜎𝑦𝑦 , and 𝜎𝑧𝑧, ontomodifiers for the kMC rate constants.
This GPR model is trained on a database of MD stress fields
and corresponding reaction rates, enabling rapid and accurate
prediction of reaction rate modifications in regions that are
transitioning from MD to kMC.
The hybrid time step, ∆𝑡hybrid, is determined by the relation-

ship:
∆𝑡hybrid = min (∆𝑡kMC,

∆𝑡MD
⟨𝜏corr⟩

) ,

where ⟨𝜏corr⟩ is the average decay time of the velocity autocor-
relation function. This formulation ensures that the coupling
between MD and kMC occurs on time scales that preserve the
underlying physical processes without introducing artifacts
from synchronization errors. Validation tests under constant
volume and temperature (NVT) conditions confirm that the to-
tal energy drift is maintained within 0.8 kcal/mol/ns, attesting
to the robustness of the integration scheme.
To further optimize computational efficiency, the MD mod-

ule employs domain decomposition techniques, partitioning
the simulation cell into smaller regions that are distributed
acrossmultiple processors using theMessage Passing Interface
(MPI). A load balancing algorithm dynamically redistributes
computational tasks based on the instantaneous reaction den-
sity in each subdomain, ensuring that regions undergoing
rapid reaction dynamics receive additional computational re-
sources. The kMC module, by contrast, benefits from the
inherent parallelism of lattice-based simulations, with updates
to individual lattice sites executed concurrently [10].
The interfacial region between MD and kMC subdomains is

treated with special care. In this region, the local reaction den-
sity fluctuates around the critical threshold 𝜌𝑐, and an interpo-
lation scheme is used to blend the outputs from both methods.
This scheme involves weighting the reaction rates from MD
and kMC based on the local density, ensuring a smooth transi-
tion without spurious discontinuities. The weighted reaction
rate 𝑘hybrid is given by:

𝑘hybrid = 𝑤(𝜌)𝑘MD + [1 − 𝑤(𝜌)]𝑘kMC,

where𝑤(𝜌) is a continuous weighting function that transitions
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from 0 to 1 as the local density 𝜌 exceeds 𝜌𝑐.
Data acquisition routines are integrated throughout the sim-

ulation to monitor key observables, including the local order
parameters, stress tensor components, and reaction rate dis-
tributions. These observables are computed in real time and
stored for subsequent analysis. In particular, the evolution of
network connectivity is tracked by calculating the coordina-
tion number distribution for silicon atoms, as well as by iden-
tifying cyclic motifs using graph-theoretic algorithms. Such
detailed tracking enables a comprehensive characterization
of the evolving silica network at both the microscopic and
mesoscopic levels.
Overall, the computational methodology described here pro-

vides a robust and efficient framework for simulating silicate
polymerization. By coupling kMC and MD through dynamic
communication and adaptive time-stepping, the framework is
able to capture both the fast, atomistically detailed processes
and the slower, statistically driven events that govern network
evolution. This integrated approach not only improves the
fidelity of the simulation but also allows for a more direct com-
parison with experimental observations, thereby enhancing
our understanding of the fundamental mechanisms underly-
ing silica formation [11].

3. Reaction Network and Solvent Effects

Proton transfer kinetics are a defining feature of early-stage
silicate polymerization, and their accurate representation is
crucial for predicting the subsequent network evolution. In
our hybrid framework, the reaction network is modeled with
a focus on the protonation states of silanol groups. Three
distinct states are considered: deprotonated silanolate (Si–O−),
neutral silanol (Si–OH), and protonated silanol (Si–OH+

2 ). The
populations of these species are governed by pH-dependent
equilibria described by the following relationships:

[Si–OH+
2 ]

[Si–OH]
= 10p𝐾𝑎1−pH, [Si–O−]

[Si–OH]
= 10pH−p𝐾𝑎2 ,

where p𝐾𝑎1 = 4.5 and p𝐾𝑎2 = 8.9. These relationships enable
the simulation to capture the dynamic balance between dif-
ferent protonation states under varying pH conditions. MD
simulations reveal that protonated silanol species, Si–OH+

2 , ex-
hibit reduced condensation barriers (𝐸𝑎 ≈ 32 kJ/mol) relative
to neutral silanol groups (𝐸𝑎 ≈ 48 kJ/mol). This reduction
in the activation energy is attributed to the enhanced nucle-
ophilicity imparted by the positive charge, which facilitates
the formation of siloxane bonds [12].
Water plays a central role in mediating proton transfer pro-

cesses, and its dynamics are modeled using a coarse-grained
4-site potential that reproduces key experimental properties.
The diffusion coefficient for water, 𝐷H2O, is matched to the
experimental value of 2.3 × 10−5 cm2∕s at 298 K. Hydronium
ions (H3O

+) are treated explicitly in the MD simulations, and
their transport is governed by both vehicular and structural
diffusionmechanisms. The latter is described by the Grotthuss
mechanism, wherein protons effectively “hop” between neigh-
boring water molecules. The hopping rate is assumed to be
proportional to the local O–O coordination number, ⟨𝑛O–O⟩,
which provides a measure of the hydrogen-bonding network’s
connectivity. In our simulations, the Grotthuss mechanism

is found to increase proton mobility by approximately 40%
compared to simple Fickian diffusion.
The interplay between water concentration and reaction ki-

netics is also of paramount importance. At high water concen-
trations ([H2O] > 15M), steric hindrance becomes significant,
leading to a suppression of oligomer growth rates by as much
as 60%. This effect arises from the competition between water
molecules and silanol groups for available reaction sites, as
well as from the disruption of the hydrogen-bond network that
facilitates proton hopping. To capture this behavior, our model
incorporates a concentration-dependent correction factor into
the reaction rate expressions. This factor effectively reduces
the activation energy in highly hydrated environments, thereby
modulating the rate of condensation reactions in a manner
that is consistent with experimental observations.
The solvent effects are further quantified through the anal-

ysis of the local dielectric environment. The effective dielec-
tric constant, 𝜀eff, is computed from the fluctuations of the
dipole moments of water molecules and is found to vary spa-
tially within the simulation cell. Regions of high water density
exhibit an increased 𝜀eff, which in turn lowers the effective
Coulombic interactions between charged species. This reduc-
tion in electrostatic interaction strength can enhance the mo-
bility of charged intermediates and facilitate proton transfer
processes. The local variation in 𝜀eff is incorporated into the
reaction-diffusion kernel, ensuring that the rate constants are
adjusted to reflect the local solvent environment accurately.
A critical aspect of the reaction network is the competi-

tion between condensation and hydrolysis reactions. While
condensation leads to the formation of siloxane bonds and
network growth, hydrolysis can reverse these processes by
breaking siloxane linkages. The balance between these com-
peting reactions is strongly influenced by the pH and water
concentration. Our simulations implement a reversible reac-
tion scheme, where the forward condensation reaction is given
by:

Si–OH + Si–OH→ Si–O–Si +H2O,

and the reverse hydrolysis reaction is modeled as:

Si–O–Si +H2O→ 2 Si–OH.

The activation energies for these reactions are modulated by
local stress effects, as obtained from the MD simulations, and
by the protonation state of the silanol groups. This reversible
scheme allows the model to capture the dynamic equilibrium
between network formation and degradation, a feature that is
particularly important during the early stages of polymeriza-
tion when the system is highly dynamic [13].
The reaction network is further enriched by the inclusion

of secondary reactions that account for the formation of cyclic
silicate species. These cyclic motifs, such as Si4O8 rings, are
identified using graph-theoretic algorithms that analyze the
connectivity of the silicon-oxygen network. The presence of
cyclic species has significant implications for the mechanical
and transport properties of the resulting silica gel, as they tend
to act as defects that disrupt long-range order. The density of
these cyclic defects, 𝑛ring, is tracked throughout the simulation
and is found to correlate inversely with the overall network
stiffness and density [14].
To integrate the effects of the solvent and the reaction net-

work, the hybrid framework continuously updates the local
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reaction rates based on the instantaneous configurations ob-
tained from MD. This dynamic updating is achieved through
an iterative feedback loop, where the stress tensor, dielectric
properties, and water concentration are used to compute cor-
rections to the activation energies and pre-exponential factors
in the Arrhenius expressions. The modified rate constant,
𝑘mod, can be expressed as:

𝑘mod = 𝜈0 exp (−
𝐸𝑎 + 𝛾 ⋅ Tr(𝜎) − ∆𝐸solvent

𝑘𝐵𝑇
) ,

where ∆𝐸solvent represents the correction term arising from
solvent effects, including dielectric screening and steric hin-
drance. This formulation ensures that the reaction kinetics
are sensitive not only to local mechanical and thermal condi-
tions but also to the chemical environment modulated by the
solvent.
The detailed treatment of the reaction network and solvent

effects in our hybrid framework enables a comprehensive un-
derstanding of the early stages of silicate polymerization. By
accurately capturing the pH-dependent protonation equilib-
ria, the dynamics of water-mediated proton transport, and the
reversible nature of condensation and hydrolysis reactions,
the model provides a robust platform for predicting the evo-
lution of silica networks. The integration of these effects into
a dynamic reaction-diffusion kernel represents a significant
advancement over traditional approaches, allowing for the sim-
ulation of complex, real-world phenomena with high fidelity
[15].

4. Structural Evolution and Gelation Dynamics

The formation of a continuous silica network from discrete
molecular species is characterized by a complex sequence
of structural evolution and gelation dynamics [16]. Ini-
tially, small oligomeric units, such as Si3O5(OH)4, form
rapidly through condensation reactions. These primary ag-
gregates then undergo further growth via both aggregation
and crosslinking mechanisms, leading to the emergence of a
percolating network. Our simulations reveal that this process
can be broadly divided into two distinct stages: an early-stage
rapid aggregation phase occurring on time scales shorter than
10 ms, and a later-stage slow crosslinking phase extending
beyond 100ms.
During the early aggregation phase, the kinetics are dom-

inated by diffusion-limited processes. The small oligomers,
formed via rapid condensation reactions, collide and coalesce
under the influence of Brownian motion. The fractal dimen-
sion, 𝑑𝑓 , of the resulting aggregates is a critical parameter that
characterizes their morphology. In our simulations, we ob-
serve fractal dimensions of 𝑑𝑓 ≈ 1.8 ± 0.2, which is consistent
with classical models of diffusion-limited aggregation (DLA).
At this stage, the aggregates are relatively loose and open, with
a significant fraction of the reactive sites remaining exposed
to the surrounding medium [14].
As the system evolves, the aggregation process transitions

to a regime dominated by reaction-limited aggregation (RLA),
where the rate of bond formation becomes the limiting factor.
In this regime, the fractal dimension increases to 𝑑𝑓 ≈ 2.3±0.1,
indicative of more compact structures [17]. The increase in
compactness is driven by the enhanced probability of bond for-

mation as the concentration of reactive sites increases within
growing clusters. The crossover from DLA to RLA is accompa-
nied by a dramatic change in the kinetics of network formation,
as evidenced by the evolution of the average cluster size, ⟨𝑆⟩,
which follows a power-law behavior:

⟨𝑆⟩ ∼ 𝑡𝛽 ,

with the scaling exponent 𝛽 reflecting the underlying aggre-
gation mechanism. Regression analyses of our simulation
data yield values of 𝛽 that are consistent with experimental
measurements obtained via static light scattering.
A key feature of the structural evolution is the onset of

gelation, which occurs when the connectivity of the network
reaches a critical threshold. In our simulations, the gelation
threshold is identified by a critical connectivity parameter, 𝑝𝑐,
at which a spanning cluster forms across the simulation cell.
Interestingly, we find that 𝑝𝑐 ≈ 0.48, a value that is slightly
higher than the 𝑝𝑐 ≈ 0.42 predicted by classical percolation
theory. This discrepancy is attributed to the presence of cyclic
silicate motifs, such as Si4O8 rings, which act as topological de-
fects. These cyclic structures effectively “lock” portions of the
network, thereby delaying the formation of a fully percolated
structure.
The presence of cyclic defects has further ramifications

for the mechanical properties of the evolving gel. During
the MD simulations, we observe significant stress accumu-
lation in regions where cyclic silicate species are prevalent.
The anisotropy of the stress distribution is evident from the
computed Young’s moduli along different crystallographic
directions. For instance, in the early stages of gelation, the
anisotropic moduli are measured as 𝐸𝑥 ≈ 12 GPa and 𝐸𝑦 ≈
9 GPa, with preferential growth observed along the ⟨100⟩ di-
rections of the FCC lattice. These anisotropies arise from the
directional dependence of the bonding network and are further
influenced by the local strain fields, 𝜖𝑖𝑗, which are continu-
ously monitored and updated during the MD simulations.
The evolution of the network is also characterized by fluctua-

tions in the local Voronoi volume,𝑉, which serve as a proxy for
the density variations within the gel. We observe that relative
fluctuations, quantified by∆𝑉∕𝑉0, exceed 5% in regionswhere
cyclic defects are abundant. Such fluctuations are indicative
of the heterogeneity inherent in the polymerizing system and
have direct implications for the transport properties of the re-
sulting material. The persistence of cyclic motifs is found to
reduce the overall bulk density of the gel by approximately
18% compared to ideal, defect-free networks. This reduction
in density correlates with a concomitant decrease in network
stiffness and an increase in pore connectivity, factors that are
crucial for applications such as catalysis andmolecular sieving.
Real-time tracking of ring statistics is a central component of

our analysis. The hybrid framework employs graph-theoretic
algorithms to identify closed loops within the silica network,
and the number density of rings, 𝑛ring, is monitored through-
out the simulation. The temporal evolution of 𝑛ring provides
insights into the network’s topological transitions. In the early
stages, 𝑛ring increases rapidly as small cyclic structures form
spontaneously during oligomer aggregation. However, as the
system transitions into the crosslinking phase, the formation
of new rings is offset by the reorganization and merging of
existing cycles, leading to a plateau in the ring density. This
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plateau correlates with the onset of macroscopic gelation and
the emergence of a mechanically robust network.
The structural evolution is further elucidated by examining

the spatial correlation functions of the network. The two-point
correlation function, 𝐶(𝑟), which quantifies the probability of
finding two connected silicate units at a distance 𝑟, exhibits a
crossover behavior. At short distances, 𝐶(𝑟) decays exponen-
tially, reflecting the local order imposed by the bond network.
At larger distances, particularly near the percolation threshold,
𝐶(𝑟) transitions to a power-law decay:

𝐶(𝑟) ∼ 𝑟−𝛼,

where the exponent 𝛼 is indicative of the long-range connectiv-
ity of the gel. Such scaling behavior is consistent with critical
phenomena observed in percolation theory and underscores
the fractal nature of the evolving network.
Mechanical characterization of the gel is performed by ap-

plying small perturbations and analyzing the resulting stress-
strain response. The anisotropic Young’s moduli discussed ear-
lier are complemented by measurements of the shear modulus
and bulk modulus, which are found to be highly sensitive to
the network topology. Regions with a high density of cyclic de-
fects exhibit lower shear moduli, suggesting that these defects
serve as points of weakness within the network. Conversely, re-
gions with a more homogeneous, open network structure tend
to display higher moduli, reflecting the enhanced load-bearing
capacity of a defect-minimized network. These observations
are in good agreement with experimental studies of silica gels,
where mechanical properties are known to vary significantly
with the degree of network connectivity and defect density.
The integration of kMC and MD in our hybrid framework

is particularly advantageous in capturing these structural
evolution dynamics. The MD simulations provide detailed,
time-resolved snapshots of the atomic configurations, while
the kMC component efficiently samples rare, long-time-scale
events that are critical for gelation. The iterative feedback be-
tween these two components ensures that the evolving stress
fields, reaction rates, and structural motifs are consistently
updated, leading to a coherent picture of the gelation process.
This multiscale approach is essential for understanding the
interplay between chemical kinetics and physical structure in
complex materials.
Furthermore, the model enables us to explore the influence

of external parameters on gelation dynamics. For instance,
systematic variations in temperature and precursor concentra-
tion reveal that higher temperatures accelerate the transition
from the aggregation to the crosslinking phase, while increased
precursor concentrations promote the formation of a denser
network with reduced porosity. In particular, simulations con-
ducted at elevated temperatures (𝑇 > 350 K) indicate that the
enhanced thermal energy not only increases the rate of bond
formation but also augments the mobility of water molecules,
thereby facilitating more rapid proton transport via the Grot-
thuss mechanism. These temperature-dependent effects are
critical for tailoring the properties of silica gels for specific
applications, such as catalysis or separation technologies.
The structural evolution and gelation dynamics of silicate

networks are governed by a complex interplay between rapid
aggregation, slow crosslinking, and the formation of topologi-
cal defects. Our hybrid kMC-MD framework captures these

processes in detail, providing insights into the fractal nature of
the evolving network, the critical role of cyclic silicate motifs,
and the impact of external parameters on gelation kinetics.
The ability to monitor and analyze these phenomena in real
time represents a significant advancement in our understand-
ing of silicate polymerization and offers a powerful tool for the
design of advanced silica-based materials.

5. Conclusion
In conclusion, the hybrid kMC-MD framework presented
herein offers a comprehensive and highly detailed approach
to modeling silicate polymerization. By integrating the atom-
istic precision of molecular dynamics with the long-time-scale
capabilities of kinetic Monte Carlo methods, the framework
successfully bridges the vast time and length scales inherent
in the formation of silicate networks. Our approach incorpo-
rates three major innovations: a reaction-diffusion kernel that
dynamically updates kMC rate constants using MD-derived
strain tensors, a solvent-mediated proton transport model that
accurately captures the Grotthuss mechanism, and a graph-
theoretic analysis that quantifies cyclic defect densities within
the evolving silica network.
Benchmarking against experimental 29Si NMR spectra

demonstrates that our model achieves a significant reduc-
tion in the error of predicted Q4∕Q3 ratios, achieving accu-
racies within 9% compared to errors exceeding 27% in models
based solely on kMC. Additionally, the framework reliably
reproduces experimentally observed pore size distributions in
nanoporous silica, with simulated values falling within 15%
of those obtained from nitrogen adsorption measurements.
These results underscore the enhanced predictive power of
the hybrid approach relative to conventional single-method
simulations [18], [19].
The computational methodology, which employs adaptive

time-stepping, dynamic domain partitioning, and iterative
feedback between MD and kMC, ensures that both fast, atom-
istically detailed processes and slow, statistically rare events
are captured with high fidelity. The integration of solvent ef-
fects—through the explicit modeling of water dynamics and
local dielectric variations—further refines the simulation, al-
lowing for a nuanced understanding of pH-dependent kinet-
ics and the role of hydration in modulating reaction barriers.
Moreover, the incorporation of reversible reaction schemes,
which account for both condensation and hydrolysis processes,
provides a realistic depiction of the dynamic equilibrium gov-
erning early-stage silicate polymerization [20], [21].
From a structural standpoint, our simulations reveal a two-

stage evolution process. In the initial phase, rapid aggregation
leads to the formation of loosely connected oligomers with a
fractal dimension characteristic of diffusion-limited aggrega-
tion. As the system evolves, a transition to reaction-limited
aggregation results in a denser, more compact network with
an increased fractal dimension. The subsequent emergence of
a percolating gel is marked by a critical connectivity thresh-
old that is modulated by the presence of cyclic silicate defects.
These defects, identified via graph-theoretic analysis, have
profound implications for the mechanical properties of the
gel, contributing to anisotropic stress distributions and reduc-
tions in bulk density. The interplay between these structural
features and the evolving mechanical properties is captured
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through detailed analyses of stress tensors, Young’s moduli,
and local volume fluctuations.
Despite these significant advancements, certain limitations

remain. In particular, the framework exhibits challenges in
accurately simulating high-alkalinity conditions (pH > 10),
where the combinatorial complexity of silicate speciation in-
creases dramatically. Additionally, discrepancies in predicted
gelation times suggest that further refinement is needed in
modeling long-range proton diffusion pathways, potentially
through the integration of continuum transport models. These
limitations represent promising avenues for future research,
as the modular design of the framework readily permits ex-
tensions and modifications to accommodate a wider range of
conditions and material systems.
The implications of this work extend beyond the funda-

mental understanding of silica polymerization. The insights
gained fromour simulations have direct relevance to the design
and optimization of a variety of silicate-based materials, in-
cluding mesoporous catalysts, bioactive glasses, and advanced
nanoporous filters. By elucidating the intricate relationship
between atomic-scale reactivity and mesoscale structural evo-
lution, our hybrid framework provides a powerful tool for
guiding experimental efforts and advancing materials design.
The ability to predict how variations in parameters such as
temperature, precursor concentration, and pH influence net-
work formation and defect density opens new opportunities
for tailoring material properties to specific applications.
In summary, the development and validation of the hybrid

kMC-MD framework represent a significant advancement in
the computational modeling of complex polymerizing systems.
The integrated approachnot only captures the essential physics
of silicate network formation across multiple scales but also
offers practical insights that can inform both fundamental re-
search and industrial applications. Future work will focus on
extending themodel to account for a broader range of chemical
environments and reaction pathways, as well as on incorpo-
rating continuum-level descriptions of transport phenomena.
These efforts are expected to further enhance the predictive
capability of the framework and to solidify its role as a corner-
stone in the simulation of advanced silicate-based materials.
The work presented here is a testament to the power of hy-

brid simulation techniques in overcoming the limitations of
traditional single-scale approaches. By marrying the strengths
ofMD and kMC,we have developed a tool that not only bridges
the gap between microscopic and mesoscopic phenomena but
also offers unprecedented insights into the dynamic processes
that govern the formation and evolution of silica networks.
As research in this area continues to evolve, the methodolo-
gies and findings described in this paper will undoubtedly
contribute to the ongoing quest for a deeper understanding
of complex material systems and the development of next-
generation functional materials.
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